DIFFERENCE OF NOTATIONS

The following is a list of notations we used in class which are different from those given in the book of Hoffman-Kunze.

notations used	notions used	meaning
in class	in the book HK	or comment
$\operatorname{Mat}_{m \times n}(F)$	$F^{m \times n}$	Set of all $m \times n$ matrice with entries in F
$\mathrm{GL}_n(F)$		Set of all invertible $n \times n$ matrice with entries in F
Vect_F		all vector spaces over F
injective	one-to-one	
surjective	onto	
linear map	linear transformation	"linear transformation" is mentioned
		but not frequently used in class
linear map	linear operator	A linear map from a vector space to itself
$\operatorname{Hom}_F(V,W)$	L(V, W)	all F -linear maps from V to W
$\operatorname{End}_F(V)$	L(V, V)	all F -linear maps from V to V
Ker(T)	null space of T	
$\dim_F \operatorname{Ker}(T)$	nullity of T	
$\operatorname{Im}(T)$	Range(T)	both are used
Injective	$\operatorname{non}-\operatorname{singular}$	injective linear map
$\operatorname{Ann}(W)$	W^0	annihilator of W
$F^{\mathbb{N}}$	F^{∞}	formal power series algebra over F
F[[x]]	F^{∞}	formal power series algebra over F
$\operatorname{Hom}_{m-\operatorname{lin}}(V^m;K)$		all m – linear maps from V^m to K
$Alt(V^m;K)$		all alternating maps from V^m to K
eigenvalue	characteristic value	
eigenvector	characteristic vector	
eigenspace	characteristic space	
$E_T(c)$		$\ker(T-cI)$, eigenspace of T w.r.t. c
χ_T		characteristic polynomial of a linear operator T
μ_T		minimal polynomial of a linear operator T

Date: November 14, 2023.

1